Model Selection , Covariance Selection and Bayes Classification via Shrinkage Estimators

نویسنده

  • JINGQIN LUO
چکیده

Statistics) MODEL SELECTION, COVARIANCE SELECTION AND BAYES CLASSIFICATION VIA SHRINKAGE ESTIMATORS by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data

Introduction      In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice,  the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...

متن کامل

Polyshrink: An Adaptive Variable Selection Procedure That Is Competitive with Bayes Experts

We propose an adaptive shrinkage estimator for use in regression problems charaterized by many predictors, such as wavelet estimation. Adaptive estimators perform well over a variety of circumstances, such as regression models in which few, some or many coefficients are zero. Our estimator, PolyShrink, adaptively varies the amount of shrinkage to suit the estimation task. Whereas hard threshold...

متن کامل

Nonparametric Stein-type shrinkage covariance matrix estimators in high-dimensional settings

Estimating a covariance matrix is an important task in applications where the number of variables is larger than the number of observations. In the literature, shrinkage approaches for estimating a high-dimensional covariance matrix are employed to circumvent the limitations of the sample covariance matrix. A new family of nonparametric Stein-type shrinkage covariance estimators is proposed who...

متن کامل

Improved Estimation of the Covariance Matrix of Stock Returns With an Application to Portfolio Selection

This paper proposes to estimate the covariance matrix of stock returns by an optimally weighted average of two existing estimators: the sample covariance matrix and single-index covariance matrix. This method is generally known as shrinkage, and it is standard in decision theory and in empirical Bayesian statistics. Our shrinkage estimator can be seen as a way to account for extra-market covari...

متن کامل

Hierarchical Shrinkage Priors for Dynamic Regressions With Many Predictors

This paper builds on a simple unified representation of shrinkage Bayes estimators based on hierarchical Normal-Gamma priors. Various popular penalized least squares estimators for shrinkage and selection in regression models can be recovered using this single hierarchical Bayes formulation. Using 129 U.S. macroeconomic quarterly variables for the period 1959 – 2010 I exhaustively evaluate the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006